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Three different QSAR methods, Comparative Molecular Field AnaIysis (CoMFA), classical QSAR (utilizing
the CODESSA program), and Hologram QSAR (HQSAR), are compared in terms of their potential for
screening large data sets of chemicals as endocrine disrupting compounds (EDCs). While CoMFA and
CODESSA (ComprehensiveDescriptors forStructural andStatistical Analysis) have been commercially
available for some time, HQSAR is a novel QSAR technique. HQSAR attempts to correlate molecular
structure with biological activity for a series of compounds using molecular holograms constructed from
counts of sub-structural molecular fragments. In addition to usingr2 andq2 (cross-validatedr2) in assessing
the statistical quality of QSAR models, another statistical parameter was defined to be the ratio of the
standard error to the activity range. The statistical quality of the QSAR models constructed using CoMFA
and HQSAR techniques were comparable and were generally better than those produced with CODESSA.
It is notable that only 2D-connectivity, bond and elemental atom-type information were considered in building
HQSAR models. Since HQSAR requires no conformational analysis or structural alignment, it is
straightforward to use and lends itself readily to the rapid screening of large numbers of compounds. Among
the QSAR methods considered, HQSAR appears to offer many attractive features, such as speed,
reproducibility and ease of use, which portend its utility for prioritizing large numbers of potential EDCs
for subsequent toxicological testing and risk assessment.

INTRODUCTION

The possibility that certain man-made chemicals can
disrupt the sensitive endocrine systems of humans and other
vertebrates by mimicking endogenous hormones has sparked
intense scientific discussion and debate in recent years.1 This
growing national concern has resulted in legislation, includ-
ing reauthorization of the Safe Drinking Water Act and
passage of the 1996 Food Quality Protection Act, mandating
that the Environmental Protection Agency (EPA) develop a
screening and testing program for endocrine disrupting
compounds (EDCs).2,3

The EDC issue and the pressing regulatory requirements
portend a prodigious financial burden for screening and
testing that will likely comprise a suite ofin Vitro and in
ViVo assays for multiple endpoints. Some 80 000 or more
existing chemicals, many commercially important and pro-
duced in enormous quantities, may ultimately need to be
evaluated for their estrogenic activity under the EPA
mandate.4 With the advent of combinatorial synthesis5 and
high-throughput screening6 techniques, the number of chemi-

cals to be tested is expected to grow dramatically in the
coming years. Fortunately, this challenge is offset by the
ability to construct quantitative structure-activity relationship
(QSAR) models for the rapid prediction of activity. Such
models have great potential for use in the identification and
classification of large numbers of potential EDCs. At the
very least, QSAR models could be employed to establish a
prioritization procedure for subsequent biological testing.

An EDC can be broadly defined as “an exogenous agent
that interferes with the production, release, transport, me-
tabolism, binding, action or elimination of natural hormones
in the body responsible for the maintenance of homeostasis
and the regulation of developmental processes”.1 Of the
many biological mechanisms that can result in endocrine
disruption, by far the most dominant and well studied is
expression of an estrogenic response.7,8 Although several
mechanistic events can determine thein ViVo estrogenic
potency of a chemical, expression of an estrogenic response
generally requires binding to the estrogen receptor (ER).

In recent years, several QSAR models have been devel-
oped for estrogenic compounds binding to the ER.9-14 Most
of these studies have employed the three-dimensional (3D)-
QSAR method of comparative molecular field analysis
(CoMFA)15 for model building. This method requires a
procedure known as “structural alignment” of the molecules
under study because a common binding site is assumed. The
utility of CoMFA has been demonstrated in a wide range of
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applications.16-18 However, CoMFA requires some knowl-
edge or hypothesis regarding the functionally active confor-
mations of the molecules under study as a prerequisite for
structural alignment. Moreover, care must be exercised when
constructing molecular alignments because slight differences
in alignment can lead to wide variations in the resultant
CoMFA model.

Classical QSAR models were also considered in the
present study, and were produced using partial least-squares
(PLS) multivariate linear regression techniques. Classical
QSAR techniques attempt to correlate a biological activity
or a physical property of interest with a pre-defined set of
calculated physicochemical descriptors within a collection
of related compounds. In contrast to CoMFA, classical
QSAR methods require no structural alignment of the
molecules.9 However, both CoMFA and classical QSAR
methods require identification of a putative bioactive con-
formation derived from either experimental evidence, mo-
lecular modeling, or conjecture. This requirement may
introduce uncertainties into the resulting QSAR models,
especially when dealing with structurally diverse data sets
containing highly flexible molecules.19

Hologram QSAR (HQSAR), recently introduced by Tri-
pos, Inc.,20 is a novel QSAR method that eliminates the need
for determination of 3D structure, putative binding confor-
mations, and molecular alignment. In HQSAR, each mol-
ecule in the data set is divided into structural fragments that
are then counted in the bins of a fixed length array to form
a molecular hologram. This process is similar to the
generation of molecular fingerprints employed in database
searches21 and molecular diversity22 calculations. The bin
occupancies of the molecular hologram are structural de-
scriptors (independent variables) encoding compositional and
topological molecular information. A linear regression
equation that correlates variation in structural information
(as encoded in the hologram for each molecule) with
variation in activity data is derived through PLS regression
analysis to produce a QSAR model. Unlike other fragment-
based methods,23 HQSAR encodes all possible molecular
fragments (linear, branched, and overlapping). Optionally,
additional 3D information, such as hybridization and chiral-
ity, may be encoded in the molecular holograms. Molecular
holograms are generated in the same manner as hashed
fingerprints where different unique fragments may populate
the same holographic bin, allowing the use of a fixed length
hologram fingerprint. This hashing procedure emphasizes
the importance of patterns of fragment distribution within
the hologram bins, which represents the nature of chemical
structures more appropriately.21

QSAR studies involve two steps: first, descriptors are
generated that encode chemical structural information,
second, a statistical regression technique is employed to
correlate the structural variation, as encoded in the descrip-
tors, with the variation in biological activity. In the present
study, three QSAR methods: CoMFA, CoDESSA,24 and
HQSAR were evaluated using three separate data sets. Data
sets 1 and 2 contained the same set of structurally diverse
molecules but differed with respect to biological endpoints.
Data set 3 was composed of a set of congeners exhibiting
several degrees of conformational flexibility. All three
QSAR methods derive a regression model from PLS analysis;
consequently, they differ primarily in the nature of their

chemical descriptors. Specifically, CoMFA employs steric
and electrostatic field descriptors that encode detailed
information concerning intermolecular interaction in three
dimensions. CODESSA calculates molecular descriptors on
the basis of two-dimensional (2D) and 3D structures and
quantum-chemical properties. HQSAR calculates exclu-
sively fragment-based molecular descriptors that are ex-
plained in greater detail in the Methodology Section.

By virtue of the differences in chemical descriptors, each
of the three QSAR methods will relate molecular structure
and properties to estrogenicity in a different way. The
specific objective of the present study is to compare CoMFA,
CODESSA, and HQSAR as QSAR methods for predicting
the binding affinity of a subset of potential EDCs to the ERs.
This objective is pursuant to our long-term goal of identifying
a QSAR method that can be applied for the rapid screening
of large numbers of potential EDCs.

METHODOLOGY

Data Sets for Analysis. The biological activity data used
in this study are the relative binding affinity (RBA) obtained
from an ER competitive binding assay with labeled endog-
enous estrogen, 17â-estradiol (E2). The RBA is 100 times
the ratio of the molar concentrations of E2 and the competing
chemical required to decrease the receptor bound radioactiv-
ity by 50%.

Data sets 1 and 2 contained the same 31 structurally
diverse molecules (Figures 1-5) comprising 19 steroids, four
triphenylethylenes, three diethylstilbestrol derivatives, two
bis(4-hydroxylphenyl)alkanes, and three phytoestrogens. The
RBA values for data sets 1 and 2 were obtained using human
ER-R and rat ER-â, respectively.25 These compounds were
used to develop the CoMFA models10 compared in this paper.

Forty-seven of the compounds contained in data set 3 were
largely congeners of the 2-phenylindole prototype struc-
ture (Figures 6 and 7).26-28 Data set 3 also included
six structurally diverse estrogens: E2, ICI 164,384, ICI
182,780, tamoxifen, 4-hydroxytamoxifen, and hexestrol
(Figures 1-3). The RBA values for compounds in data set
3 were obtained with calf ER. These data were used to
derive the CoMFA and CODESSA models9 for comparison
with the HQSAR models in this paper.

QSAR Methods. All molecular modeling and statistical
analyses were performed using Sybyl 6.315 and Pirouette
2.03.29 Procedures for selecting the putative bioactive
molecular conformation required for CoMFA and CODES-
SA, together with rules for structural alignment employed
in CoMFA, are described in previous reports.9,10

Calculation of CoMFA Descriptors. The aligned mol-
ecules were placed in a 3D cubic lattice with 2 Å spacing.
Steric (van der Waals) and electrostatic (Coulombic) field
descriptors were calculated for each molecule at all lattice
points using an sp3 carbon probe with+1.0 charge. Cal-
culated steric and electrostatic energies>30 kcal/mol were
truncated to this value. The CoMFA field descriptors were
scaled using the CoMFA standard scaling methods30 provided
in Sybyl 6.3.

Calculation of Classical QSAR Descriptors. The
CODESSA program was used to generate values for>200
physicochemical descriptors.24 These descriptors are gener-
ally divided into five categories: constitutional, topological,
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geometrical, electrostatic, and quantum-chemical. The sim-
plest descriptor type is constitutional (e.g., atom counts,
molecular weight), which reflects the molecular composition
without regard to geometric or electronic structure. Topo-
logical descriptors include the Kier and Hall, Randic, and
Wiener indices, which are most sensitive to molecular
connectivity. Geometrical descriptors, such as moment of
inertia and molecular surface area, require the 3D coordinates
of the constituent atoms of a molecule. Electrostatic
descriptors reflect particular aspects of charge distribution
and can be calculated using any of several empirical

procedures within the CODESSA program as well as a
number of quantum-mechanical approaches. Quantum-
chemical descriptors enhance the conventional descriptors
by providing information about the internal electronic
properties of molecules. CODESSA is capable of computing
∼400 descriptors for each molecule. Descriptors for which
values are invariant or incalculable for any compound within
the data set were excluded from consideration. Of the∼200
remaining descriptors, about half were quantum-chemical in
nature. Each set of descriptor values was subjected to
autoscaling31 prior to statistical analysis.

Calculation of HQSAR Descriptors. The following
procedure (Figure 8) was used to construct molecular
holograms containing the HQSAR descriptors. First, all
linear, branched, and overlapping substructural fragments in
the size range 4 to 7 atoms were generated for each
molecule.21 All generated fragments from a molecule were
then hashed into a fixed length array to produce the molecular
hologram. In detail, the procedure is as follows: the SLN
(SYBYL Line Notation)32 for each fragment generated is
mapped to a unique integer in the range of 0 to 231 using a
CRC (cyclic redundancy check)33 algorithm. Each integer
is then used to select a bin in an integer array of predeter-
mined length (hologram length), the occupancy of which is
then incremented by one. The hashing process occurs in
cases where the value of the CRC-produced integer is larger
than the length of the hologram, and the value of the
remainder when the integer is divided by the hologram length
is used to identify the array bin whose occupancy was to be
incremented. The final array is the molecular hologram, and
the bin occupancies are the descriptor variables that encode

Figure 1. Structures of steroidal compounds in data sets 1 and 2.

Figure 2. Structures of synthetic estrogens in data sets 1 and 2.

Figure 3. Structures of antiestrogens in data sets 1 and 2.

Figure 4. Structures of phytoestrogens in data sets 1 and 2.

Figure 5. Structures of industrial chemicals in data sets 1 and 2.
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molecular structural information. The hologram length
(number of array bins) defines the dimensionality of the
descriptor space.

The hashing process greatly reduces the size requirement
of a molecular hologram (compared with the case where each
unique fragment is counted in its own bin) but leads to a
phenomenon called “fragment collision”. Identical molecular

fragments always generate identical integers through the CRC
algorithm and hence will always be counted in the same bin.
Typically, because the number of unique fragments contained
in a molecule is rather larger than the number of holographic
bins, the hashing procedure described will map different
integers, and therefore different unique fragments, to the
same bin causing fragment collision. In other words, each
holographic bin will correspond to several different sub-
structural fragments. Surveying HQSAR models based on
a range of different hologram lengths and selecting the
hologram length that yields the lowest cross-validated
standard error (or highestq2) minimizes the negative impact
of such collisions. The HQSAR module provides 12 default
hologram lengths that have been found to yield predictive
models on a number of test data sets. These default
hologram lengths are prime numbers such that each provides
a unique set of fragment collisions.

The exact model produced by HQSAR is dependent not
only on the hologram length but also on the information
contained in the generated fragments. The particular nature
of substructural fragments generated by HQSAR and,
consequently, the information contained in the resultant
molecular holograms can be altered through the settings of
seven parameters. These hologram construction parameters
are divided into two classes:fragment size and fragment
distinction. The twofragment sizeparameters, minimum and
maximum fragment size, determine the maximum and
minimum number of atoms in any one fragment (the default
values for these parameters are 4 and 7, respectively).
Fragment distinctionparameters describe what information
from the original molecule is retained in the fragment in
terms ofatoms, bonds, connections, hydrogens, andchirality.
Table 1 and Figure 9 depict how these different parameter
settings affect the information contained in the generated
fragments and lead to the generation of distinct fragments
from the same portion of the original molecule.

PLS-QSAR. Predictive QSAR models were produced
using separate PLS analyses of the three data sets to correlate
variation in biological activity with variation in the descrip-
tors described in the previous sections. The optimum number
of principal components (PCs) corresponding to the smallest
standard error of prediction was determined by the Leave-

Figure 6. Structures of 2-phenylindoles in data set 3.

Figure 7. Structures of 5,6-dihydroindolo[2,1-R]isoquinolines in
data set 3.

Figure 8. Schematic illustrating generation of a molecular holo-
gram: A molecule is broken into a number of structural fragments
that are assigned fragment integer identifications (IDs) using the
CRC algorithm. Then each fragment is placed in a particular bin
based on its fragment integer ID corresponding to the bin ID. The
bin occupancy numbers are HQSAR descriptors that count structural
fragments in each bin.
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One-Out (LOO) cross-validation procedure. By this proce-
dure, each compound is systematically excluded once from
the data set, after which its activity is predicted by a model
derived from the remaining compounds. The predicted
activities of the “left out” compounds allow the calculation
of q2 and cross-validated standard error. Using the optimal
number of PCs, the final PLS analysis was carried out
without cross-validation to generate a predictive QSAR
model with a conventional correlation coeffficientr2 and a
non-cross-validated standard error.

RESULTS

Quality of the QSAR Models. The quality of a QSAR
model can be assessed in terms of various statistical
measures. The values ofr2 andq2 are normally accepted as
statistical measures of merit for a QSAR model. In many
QSAR studies, the criterionr2 g 0.9 is employed to decide
whether a model is internally self-consistent. It should be
noted thatr2 makes no assessment of the intrinsic precision
or accuracy of the data itself. The value ofq2, derived from
the LOO cross-validation procedure, tests the stability of the
model through perturbation of the regression coefficients by
consecutively omitting each compound during the model
generation procedure. Consequently,q2 can be considered
a measure of the ability of the model to interpolate within
the training set population. The criterionq2 g 0.5 is
normally adopted in many CoMFA studies for determining
the acceptability of the model for this purpose.34 Values of
the r2 and q2 associated with the three QSAR models for
each of three data sets are given in Table 2. In this example,
only 2D connectivity, bond and elemental atom-type infor-
mation (atomsand bondsparameters turned on) was used
in the HQSAR calculations. It is seen that all three QSAR
models exceeded theq2 g 0.5 criterion. In terms of goodness
of fit, CoMFA models provided the highestr2 values

accounting for at least 95% of the variation in biological
activity in all data sets. Individualr2 values for each data
set were slightly lower for HQSAR than for CoMFA models.
Importantly, the averager2 value for all three data sets
exceeded 0.90 for both HQSAR and CoMFA. CODESSA
yielded a good QSAR model for data set 2, but lowerr2

values for data sets 1 and 3 thus indicating that further work
on CODESSA may be required.

Althoughr2 andq2 are important for validating the quality
of a QSAR model, these parameters alone fail to account
for other factors. One such factor is the number of principal
components (degrees of freedom) that should be considered
when comparing different QSAR models derived from an
individual data set. The value ofr2 generally increases as
more PCs are included in the model. Thus, it would seem
reasonable to scale a statistical parameter of choice by the
number of PCs. Indeed, the primary motivation for using
the PLS method is to build the most predictive model that
fits the known biological data (highq2 andr2, respectively)
with the fewest number of PCs to avoid overfitting of data
points. Another factor is the range of biological activity
within the data set, which also should be considered during
the comparison of the quality of QSAR models across
different data sets. Given two QSAR models that have the
samer2 (or q2) value, the model derived from the data set
with the larger biological activity range is more valid than
that obtained with the smaller activity range.

Alternatively, the standard error and cross-validated
standard error can be used as measures of goodness of fit
and predictivity. Although several ways exist to calculate
the standard error for a regression equation, the number of
degrees of freedom should be factored in when comparing
different models. A more effective measure of model
goodness of fit is the ratio of the standard error to the activity
range. One advantage of explicitly including the range of
biological activity is that the performance of separate QSAR
models can be compared across different data sets. This ratio
should generally be<10% for good QSAR models.35 The

Table 1. Definition of Fragment Parameters in HQSAR

parameter definition

atoms Theatomsparameter enables fragments to be distinguished based on elemental atom types; for example, allowing NH3 to be
distinguished from PH3.

bonds Thebondsparameter enables fragments to be distinguished based on bond orders; for example, in the absence of hydrogen, allowing
butane to be distinguished from 2-butene.

connections Theconnectionsparameter provides a measure of atomic hybridization states within fragments; that is,connectionscauses HQSAR
to keep track of how many connections are made to constituent atoms and the bond order of those connections.

hydrogens By default, HQSAR ignores the hydrogen atoms during fragment generation. Thehydrogensparameter overrides this behavior.
chirality Thechirality parameter enables fragments to be distinguished based on atomic and bond stereochemistry. Thus, stereochemistry

allowscisdouble bonds to be distinguished from theirtranscounterparts, andR-enantiomers to be distinguished from
S-enantiomers at all chiral centers.

Figure 9. Schematic illustrating different fragment parameters in
HQSAR.

Table 2. Summary of the Key Statistical Parameters Obtained for
Each QSAR Model

datasets statistics CoMFA HQSAR CODESSA

1 q2 0.70 0.67 0.46
r2 0.95 0.88 0.79
PCs 4 4 2

2 q2 0.60 0.68 0.61
r2 0.95 0.91 0.92
PCs 4 5 4

3 q2 0.61 0.53 0.54
r2 0.97 0.93 0.68
PCs 9 9 3
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percentage ratios of the standard error to the activity range
of QSAR models in this study for both the cross-validated
and non-cross-validated PLS analyses are summarized in
Table 3. The values of this ratio for both CoMFA and
HQSAR models are low, further substantiating their statistical
validity. In contrast, higher values of this ratio are seen for
the CODESSA models in data sets 1 and 3. This observation
is consistent with the large standard error associated with
the CODESSA models and with the low value ofr2 noted
in Table 2.

Predictions for Test Compounds. Four compounds from
data sets 1 and 2, namely 5R-androstanedione (1), 5â-
androstanedione (2), 4-androstenedione (3), and corticoster-
one (4), were excluded from the training set to serve as test
compounds to evaluate the predictive ability of the present
QSAR models. These particular compounds were selected,
in part, because their biological data were reported as “less
than” values. Although the approximate nature of the RBA
values for these compounds precluded their use in the training
sets, these RBA values could still be compared with those
predicted by each of the three QSAR models. The results
for the test-set compounds are summarized in Table 4, in
which the observed log RBA values are listed along with
the corresponding log RBA values predicted by the three
QSAR models based on both the human ER-R (data set 1)
and rat ER-â data (data set 2). The log RBA values predicted
by CoMFA and HQSAR are highly consistent with the
experimental data and with each other. For1, 2, and 3,
CoMFA and HQSAR correctly predicted that the log RBA
values are indeed<-2.0 or close to-2.0. Although only
HQSAR correctly predicted that the log RBA value for4 in
data set 2 is<-3.0, the log RBA values predicted by
CoMFA and HQSAR are in agreement with each other and
are in reasonable agreement with the experimentally deter-
mined limit. The corresponding log RBA values predicted
by the CODESSA model appear less satisfactory. Notably
the CODESSA-predicted activities of4, for both biological
endpoints, were in poor agreement with experiment, being
>2 log units from the maximum experimentally determined

limit. Additionally, although the CODESSA-predicted val-
ues for1, 2, and3 were in accordance with the experimental
limitations, they were in poor agreement with the CoMFA
and HQSAR predicted values. Finally, CODESSA predicted
activities for 1 and 2 were outside the range of activities
found in the training datasets used to produce the QSAR
models.

Utility of the QSAR Approaches for Screening. QSAR
screening of a large number of chemicals for endocrine
disruption potential requires a highly practical and accurate
QSAR method. Three criteria for practicality were included
in this study; namely, computation time, reproducibility, and
convenience. Computation time is a significant concern
when screening huge numbers of compounds. Reproducible
QSAR models provide an opportunity for different investiga-
tors to compare and validate prediction results. A convenient
QSAR method allows a non-expert user to make biological
activity predictions more readily. A fast, reproducible, user-
friendly QSAR prediction method offers major advantages
for the routine screening of large chemical databases for
potential EDCs.

The key molecular modeling and statistical analysis
processes required for CoMFA, HQSAR, and CODESSA
model development are listed in Table 5. The first step in
both CoMFA and CODESSA studies is the determination
of the putative ligand binding conformation. Because
experimental evidence about ligand-receptor binding con-
formations is usually lacking, the bioactive conformation
must be postulated based on information about the receptor
binding site and/or the common conformational space
accessible to different known ligands. In lieu of such
information, the global minimum-energy conformation is
commonly selected. Regardless of the choice, a considerable
amount of time and expertise is required for molecular
modeling. In contrast to CoMFA and CODESSA, HQSAR
requires only information about the 2D molecular structure,
requiring little or no molecular modeling. Generation of
descriptors using CoMFA and CODESSA involve time-
consuming processes that can be carried out effectively only
by expert modelers; for examples, structural alignment in
CoMFA and semi-empirical quantum mechanical (AMPAC/
MOPAC) calculations in CODESSA. In contrast, generation
of molecular holograms as the chemical descriptors in
HQSAR takes considerably less time and expertise. It is
worthwhile to mention that the construction of the regression
equation through standard PLS analysis takes less time in
HQSAR than in CoMFA inasmuch as the number of
descriptors generated is generally far less.

Due to the dependence of CODESSA and CoMFA models
on molecular conformation and (CoMFA) structural align-
ment, in which small perturbations can become magnified

Table 3. Ratio of the Standard Error to the Activity Range, Given
as a Percentage

dataset PLS CoMFA HQSAR CODESSA

1 cross-validated 15.7 16.4 20.3
non-cross-validated 6.3 9.9 12.6

2 cross-validated 17.4 15.9 17.1
non-cross-validated 6.5 8.5 7.6

3 cross-validated 15.0 16.5 16.5
non-cross-validated 4.5 6.3 13.8

Table 4. Observed Versus Predicted Log RBA Valuesa

dataset cpd observed CoMFA CODESSA HQSAR

1 <-2.0 -1.95 -3.84 -2.48
2 <-2.0 -2.10 -3.97 -2.48

1 3 <-2.0 -2.22 -3.31 -2.59
4 <-3.0 -2.41 -0.61 -2.36
1 <-2.0 -2.11 -3.78 -1.81
2 <-2.0 -2.32 -4.57 -1.81

2 3 <-2.0 -2.50 -2.69 -2.48
4 <-3.0 -2.05 -0.50 -3.03

a Obtained by the three QSAR methods under study for the following
test compounds in datasets 1 and 2: 5R-androstanedione (1), 5â-
androstanedione (2), 4-androstenedione (3), and corticosterone (4).

Table 5. Summary of Steps in Developing QSAR Models for
CoMFA, HQSAR, and CODESSA

step CoMFA HQSAR CODESSA

(1) determine required not required required
conformation

(2) generate determine generate AMPAC
descriptorsa alignment hologram calculation

(3) statistics descriptor space descriptor space descriptor space
(LOO/PLS) (>2000) (<500) (<500)

a In each case, only the “rate-determining” step is listed.

674 J. Chem. Inf. Comput. Sci., Vol. 38, No. 4, 1998 TONG ET AL.



in the final QSAR model, much care must be taken when
generating these models to ensure reproducibility. Because
the calculation of HQSAR descriptors from counts of
substructural molecular fragments is straightforward, model
reproducibility is readily achieved in minimal time.

Evaluation of the Fragment Parameters in HQSAR.
Based on our initial results, which demonstrated the utility
of HQSAR for screening large databases, the technique was
investigated more thoroughly by varying the fragment type
and length parameters. The data in Table 6 shows that
predictive HQSAR models are readily derived using only
elemental and bond-type information. Incorporating hydrogen-
containing fragments into molecular holograms (turning on
the Hydrogensparameter) appears to decrease the signal-
to-noise ratio in molecular holograms. Thus, PLS has greater
difficulty in determining a predictive model that fits the
known activity data, as evidenced by the lowerq2 and r2

values in data sets 1 and 2. The inclusion of atomic
hybridization and chirality information also failed to improve
significantly the quality of the HQSAR models.

Fragment size parameters control the minimum and
maximum length of fragments to be included in the hologram
fingerprint. As mentioned previously, molecular holograms
are formed by the generation of all linear, branched,
overlapping fragments betweenM andN atoms in size. The
parametersM andN can be changed to include smaller or
larger fragments in the holograms. Default fragment lengths
of M ) 4 andN ) 7 are provided. The HQSAR results for
six different fragment sizes for data set 1 are summarized in
Table 7. The highest values for bothr2 andq2 were obtained
for fragment lengths of 6-9; however, neitherr2 or q2

showed much sensitivity to fragment length. Overall, minor
alteration of any of the HQSAR parameter settings from
those provided as default failed to alter the quality of
generated QSAR models to any significant extent.

DISCUSSION

Three QSAR models were developed for each of three
data sets. These models were compared using several
statistical measures, includingr2, q2, and the ratio of standard
error to the activity range. A number of variations on the
basic HQSAR model (which had only theatoms, bonds
parameters turned on and used default fragment lengths) were
also developed, using information onconnectiVity, hydrogens,
and chirality. The variants, which increase hologram
information content, did not provide any general improve-
ment in the basic model as measured byr2 andq2.

Data set 2 describes ligand binding to the ER-â,24 a
recently discovered ER different from but with homology
to the classical ER, now termed ER-R (data set 1). The
present study, which includes HQSAR and CODESSA
models, compliments and extends our early development of
QSAR models for these ERs using CoMFA.10

In the present application, CoMFA yielded the best QSAR
models in terms of self-consistency and ability to interpolate
within the training set population. Because the molecular
descriptors in CoMFA encode for molecular shape and
charge distribution in 3D space, it is not surprising that
CoMFA was best able to capture the salient features
associated with molecular recognition in ER binding. Fur-
thermore, information derived from CoMFA models can be
visualized and employed to determine the 3D properties of
the molecules under study that may be responsible for activity
at the ER. Although the HQSAR models under comparison
included only elemental and bond-type information, the
quality of the HQSAR models was comparable with those
from CoMFA. Elemental and bond-type information in-
cluded in molecular holograms is compositional and topo-
logical in nature.

Similar information is also included among the CODESSA
descriptors. However, HQSAR and CODESSA differ fun-
damentally in the way they encode the topological features
of molecules. Typical topological descriptors in CODESSA,
such as the Kier-Hall and Randic-Wiener indices, compress
molecular topological information into a single value. This
reduction of connectivity information to a single number
leads to a degree of information loss. In contrast, topological
information in HQSAR is encoded in structural fragments
that are distributed into molecular holograms for selection
and processing by PLS. This process leads to a lesser degree
of topological information loss. Differences in topological
features for a set of molecules are well represented in the
HQSAR descriptors. In contrast to CoMFA and HQSAR,
CODESSA is apparently lacking a sufficient number of
descriptors that are readily selected by PLS to correlate with
estrogenic activity (with specific reference to data sets 1 and
3). The resolution of these issues associated with CODES-
SA, although not an objective of the present study, may
emerge from the selection and optimization of the collection
of descriptors by using variable selection methods such as
genetic algorithms in conjunction with PLS36 or other
statistical methods37 such as artificial neural networks.38

Applications of QSAR methods continue to grow. One
general application is to identify important structural features
relating a specific biological activity for lead discovery and/
or optimization in drug design. CoMFA and classical QSAR
are more suitable for this purpose. A second application is
mass screening of large chemical databases to predict specific

Table 6. Influence of Various Fragment-Type Parameters on ther2

andq2 of the Resulting HQSAR Model

additonal option addeda

data set statistics nonea Conb Hc Con-H Chid

1 q2 0.67 0.68 0.51 0.54 0.67
r2 0.88 0.88 0.81 0.90 0.91

2 q2 0.68 0.65 0.40 0.42 0.64
r2 0.91 0.88 0.57 0.63 0.88

3 q2 0.53 0.68 0.59 0.54 0.61
r2 0.93 0.96 0.94 0.87 0.93

a In every case, theAtomsand Bondsflags are turned on.b Con,
connectivity flag is on.c H, hydrogens flag is on.d Chi, chirality option
is used by combining with Con-H.

Table 7. Comparison of Different Fragment Lengths on the
Resulting HQSAR Modelsa for Data Set 1

fragment length q2 r2

2-5 0.67 0.86
3-6 0.60 0.81
4-7 0.67 0.88
5-8 0.70 0.92
6-9 0.73 0.94
7-10 0.68 0.91

a Fragment type is onlyAtomsandBonds.
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biological activities. In the present case, new legislation
requires the screening of>80 000 chemicals for potential
endocrine disrupting activity. A major category includes
estrogenic chemicals that act via binding to both the ER-R
and -â subtypes. Because inactive chemicals can be ef-
fectively separated from active molecules based on 2D
descriptors using hierarchical clustering methods,39 the
challenge is to develop QSAR procedures that identify active
chemicals with a high degree of confidence. Additionally,
combinatorial chemistry techniques are dramatically increas-
ing the number of chemicals under consideration for product
development. Therefore, it is important to have a QSAR
technique that offers not only consistent and reproducible
predictivity, but also a fast and convenient procedure.
HQSAR models appear well suited for such applications.
Because the CoMFA and CODESSA requirements for 3D
structure, bioactive conformation, and molecular alignment
are eliminated in HQSAR, the HQSAR method provides
shorter computation time, simple reproducibility, and con-
venience. These three factors combined with the ability to
generate a robust model give the HQSAR technique signifi-
cant advantages for use in screening large datasets of
chemicals (e.g., EDCs). The marginally better statistical
results associated with the CoMFA-generated models do not
compensate for these practical limitations. Current CODES-
SA models also require one to know or postulate the
bioactive conformation and may include time-consuming
quantum-mechanical calculations. Additionally, CODESSA
models perform less satisfactorily than either CoMFA or
HQSAR models for the present datasets, according to
statistical measurements.

CONCLUSION

Three different techniques for the generation of QSAR
modelssCoMFA, CODESSA, and HQSARswere evaluated
for their utility (predictive, fast, readily reproducible) to
screen large numbers of compounds for estrogenic activity.
The CoMFA models emerging from this study were of good-
to-excellent quality (highr2) and exhibited good predictive
ability for interpolation within the training set population
(high q2). Predictions made with CoMFA models on four
compounds excluded from the training set were in good
agreement with the experimentally determined values. More-
over, information derived from CoMFA models can be
employed to identify specific molecular factors responsible
for the differing activities in a group of molecules. Although
CoMFA models are of high quality and can give indication
of structural differences responsible for differing biological
activities, they can be time consuming to construct because
they require determination of suitable molecular conforma-
tions and a structural alignment of the molecules under study.

For the present three data sets under investigation, the
QSAR models generated based on CODESSA descriptors
with implementation of PLS have relatively lower quality.
Further analysis and validation of this technique is suggested
before it can be used as a prioritizing method for potential
EDCs.

QSAR models generated through the HQSAR technique
have comparable quality to those of CoMFA. The HQSAR
method also showed good agreement with both experiment
and CoMFA in the prediction of the four compounds

excluded from the training datasets. Furthermore, because
HQSAR employs counts of substructural molecular frag-
ments as descriptors and requires no 3D structures or
molecular alignment, it is both fast and reproducible.

Because of new legislation, the EPA has been mandated
to develop a screening and testing program for potential
endocrine disrupting chemicals. QSAR methodologies would
be useful as a prioritization tool for the large number of
compounds requiring testing before the use ofin Vitro and
in ViVo assays. Such an approach requires the QSAR
technique employed to possess certain fundamental quali-
ties: good predictivity, speed, and ease of use. Among the
QSAR methods examined, HQSAR appears to offer many
attractive features that portend its utility for prioritizing
potential EDCs for subsequent toxicological testing and risk
assessment.
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